1. Using the Taylor Table approach on the finite difference approximation of the 1^{st} derivative

$$\left(\frac{\partial u}{\partial x}\right)_{j} + c\left(\frac{\partial u}{\partial x}\right)_{j+\beta} = \left(au_{j} + bu_{j+1}\right)/\Delta x$$

- (a) Find the coefficients a, b, and c in terms of β which minimize the error er_t . (Points:4) (HINT: $u_{j+\beta} = u_j + \beta \Delta x \left(\frac{\partial u}{\partial x}\right)_i + \frac{1}{2!} (\beta \Delta x)^2 \left(\frac{\partial^2 u}{\partial x^2}\right)_i + \frac{1}{3!} (\beta \Delta x)^3 \left(\frac{\partial^3 u}{\partial x^3}\right)_i + \cdots$)
- (b) Find the resulting expression for er_t , in terms of β and find the value of β which further minimizes the error. (Points:4)

ANSWER Problem #1 From the Taylor table

$$\begin{vmatrix} u_j & \Delta x \cdot \left(\frac{\partial u}{\partial x}\right)_j & \Delta x^2 \cdot \left(\frac{\partial^2 u}{\partial x^2}\right)_j & \Delta x^3 \cdot \left(\frac{\partial^3 u}{\partial x^3}\right)_j & \Delta x^4 \cdot \left(\frac{\partial^4 u}{\partial x^4}\right)_j \\ \hline c \cdot \Delta x \cdot \left(\frac{\partial u}{\partial x}\right)_{j+\beta} & c & c \cdot (+\beta) \cdot \frac{1}{1} & c \cdot (+\beta)^2 \cdot \frac{1}{2} & c \cdot (+\beta)^3 \cdot \frac{1}{6} \\ \Delta x \cdot \left(\frac{\partial u}{\partial x}\right)_j & 1 & \\ -b \cdot u_{j+1} & -b \cdot (1) \cdot \frac{1}{1} & -b \cdot (1)^2 \cdot \frac{1}{2} & -b \cdot (1)^3 \cdot \frac{1}{6} & -b \cdot (1)^4 \cdot \frac{1}{24} \\ -a \cdot u_j & -a & \end{vmatrix}$$

the following equation has been constructed to maximize the order of accuracy

$$\left[\begin{array}{ccc} -1 & -1 & 0 \\ 0 & -1 & 1 \\ 0 & -\frac{1}{2} & \beta \end{array}\right] \left[\begin{array}{c} a \\ b \\ c \end{array}\right] = \left[\begin{array}{c} 0 \\ -1 \\ 0 \end{array}\right]$$

This has the solution

$$\begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} \frac{-2\beta}{2\beta - 1} \\ \frac{2\beta}{2\beta - 1} \\ \frac{1}{2\beta - 1} \end{bmatrix}$$

The Taylor series error of this difference scheme is

$$er_t = \left(-b\frac{1}{6} + c\beta^2 \frac{1}{2}\right) \Delta x^2 \left(\frac{\partial^3 u}{\partial x^3}\right)_{ij}$$

$$= \frac{\beta(3\beta - 2)}{6(2\beta - 1)} \Delta x^2 \left(\frac{\partial^3 u}{\partial x^3}\right)_{ij}$$

This shows that the scheme is second order for arbitrary β .

To further minimize the error, let $\beta = \frac{2}{3}$, thereby eliminating the above term and forcing the error out to the next term

$$er_{t} = \left(-b\frac{1}{24} + c(\beta)^{3}\frac{1}{6}\right)\Delta x^{3} \left(\frac{\partial^{4} u}{\partial x^{4}}\right)_{j}$$
$$= \frac{-1}{54}\Delta x^{3} \left(\frac{\partial^{4} u}{\partial x^{4}}\right)_{j}$$

Now a third order method.

- 2. Find the expression for the modified wave number of the scheme in terms of Δx and k. Cast the result in terms of sin's and cos's and where indicated use series expansion to identify the accuracy of the scheme.
 - (a) $(\delta_x u)_j = (u_{j-2} 4u_{j-1} + 4u_{j+1} u_{j+2})/(4\Delta x)$ and identify the accuracy of the scheme. (Points:4)
 - (b) $(\delta_{xxxx}u)_j = (u_{j-2} 4u_{j-1} + 6u_j 4u_{j+1} + u_{j+2})/\Delta x^4$ and identify the accuracy of the scheme. (Points:4) (HINT: $\delta_{xxxx}e^{ikj\Delta x} = (k^*)^4e^{ikj\Delta x}$, find $(k^*)^4 = k^4 + O(\Delta x^p)$, that is, don't try to take the 4th

(HINT: $\delta_{xxxx}e^{ikj\Delta x} = (k^*)^4 e^{ikj\Delta x}$, find $(k^*)^4 = k^4 + O(\Delta x^p)$, that is, don't try to take the 4th root..)

ANSWER Problem #2a

We apply $u_j = e^{ikj\Delta x}$ to both sides and get

$$\left(ik^*e^{ikj\Delta x}\right) = e^{ikj\Delta x} \left(e^{-2ik\Delta x} - 4e^{-ik\Delta x} + 4e^{+ik\Delta x} - e^{2ik\Delta x}\right)/(4\Delta x)$$

which give us

$$ik^* = i\frac{(4sin(k\Delta x) - sin(2k\Delta x))}{2\Delta x}$$

Expanding the sin function gives

$$k^* = k + \frac{1}{3}k^3\Delta x^2 + \cdots$$

showing a 2nd order approximation to the first derivative.

ANSWER Problem #2b

We apply $u_j = e^{ikj\Delta x}$ to both sides and get

$$\left((k^*)^4 e^{ikj\Delta x} \right) = e^{ikj\Delta x} \left(e^{-2ik\Delta x} - 4e^{-ik\Delta x} + 6 - 4e^{+ik\Delta x} + e^{2ik\Delta x} \right) / \Delta x^4$$

which give us

$$(k^*)^4 = \frac{(6 - 8\cos(k\Delta x) + 2\cos(2k\Delta x))}{\Delta x^4}$$

Expanding the cos function gives

$$(k^*)^4 = k^4 - \frac{1}{6}k^6\Delta x^2 + \cdots$$

showing a 2nd order approximation to the fourth derivative.

3. Consider the predictor- corrector method

$$\tilde{u}_{n+1} = u_{n-1} + 2h(\tilde{u}')_n$$
 $u_{n+1} = u_n + h(\tilde{u}')_{n+1}$

applied to the representative equation

$$u' = \lambda u + ae^{\mu t}$$

Note!!!! I have put in more to this than in the midterm. Here I added to particular solution part in the question and answers. To get what was asked for on the Midterm set a=0 and eliminate the Q(E) parts

- (a) Identify the characteristic and particular operators as discussed in class, [P(E)] and $\vec{Q}(E)$ and find the characteristic polynomial P(E). (Points:3)
- (b) Find the σ 's for this method (HINT: it is a 2 root method). (Points:2)
- (c) Identify the principal and spurious roots and justify your choice. (Points:2)
- (d) Find er_{λ} and identify the order of this method. (Points:2)
- (e) Find the particular solution, u_{∞} . (Optional:Points:1)
- (f) Determine the stability of the method, i.e., conditions on λh . (Optional:Points:2)

(Note: The $\sim in (\tilde{u}')_n$ for the predictor step)

ANSWER Problem #3a

For the predictor-corrector combination

$$\tilde{u}_{n+1} = u_{n-1} + 2h(\tilde{u}')_n$$

 $u_{n+1} = u_n + h(\tilde{u}')_{n+1}$

Applying the time-marching scheme to the representative equation

$$\frac{du}{dt} = \lambda u + ae^{\mu t}$$

results in the following equation set

$$\tilde{u}_{n+1} = u_{n-1} + 2h \left(\lambda \tilde{u}_n + ae^{\mu h n} \right)$$

$$u_{n+1} = u_n + h \left(\lambda \tilde{u}_{n+1} + ae^{\mu h (n+1)} \right)$$

Introducing the difference operator, E, the equation set may be expressed in matrix form as

$$\left[egin{array}{cc} E-2\lambda h & -E^{-1} \ -\lambda hE & E-1 \end{array}
ight] \left[egin{array}{c} ilde{u}_n \ u_n \end{array}
ight] = \left[egin{array}{c} 2h \ hE \end{array}
ight] ae^{\mu hn}$$

The results for [P(E)] and $\vec{Q}(E)$ are obviously from the previous equation.

The characteristic polynomial equals the determinant of the matrix

$$P(E) = E^2 - (1 + 2\lambda h)E + \lambda h$$

The particular polynomial, Q(E), for the final family u_n (as opposed to the intermediate family \tilde{u}_n) is given by

$$Q(E) = \det \left[egin{array}{cc} E - 2\lambda h & 2h \ -\lambda hE & hE \end{array}
ight] = hE^2$$

ANSWER Problem #3b

The characteristic polynomial is

$$P(\sigma) = \sigma^2 - (1 + 2\lambda h)\sigma + \lambda h$$

giving

$$\sigma_{1,2} = \frac{1}{2} + \lambda h \pm \frac{1}{2} \sqrt{1 + 4\lambda^2 h^2}$$

ANSWER Problem #3c

$$\sigma_1 = \frac{1}{2} + \lambda h + \frac{1}{2} \sqrt{1 + 4\lambda^2 h^2}$$

and

$$\sigma_2 = \frac{1}{2} + \lambda h - \frac{1}{2}\sqrt{1 + 4\lambda^2 h^2}$$

An easy way to check for the principal and spurious roots is to let h=0. For the principal root $\sigma=1$ is consistent with $e^{\lambda h}$ for h=0 and the spurious root will not equal 1. In this case $\sigma_1=1$ and $\sigma_2=0$ identifying the two types.

ANSWER Problem #3d

Expanding the square root for the principal root

$$\sigma_1 = 1 + \lambda h + \lambda^2 h^2 + \cdots$$

and the transient error is

$$er_{\lambda} = -\frac{1}{2}(\lambda h)^2 + O(h^3)$$

a first order method.

ANSWER Problem #3e

The exact numerical solution to $u' = \lambda u + ae^{\mu t}$ is then

$$u_n = c_1 \sigma_1^n + c_2 \sigma_2^n + a e^{\mu h n} \frac{Q(e^{\mu h})}{P(e^{\mu h})}$$

which give us the Particular Solution

$$u_{\infty} = ae^{\mu hn} \cdot \frac{he^{2\mu h}}{e^{2\mu h} - (1 + 2\lambda h)e^{\mu h} + \lambda h}$$

ANSWER Problem #3f

Determine the stability of the method, i.e., conditions on λh . This is a little hard to do from the definition of the σ roots directly. The basic condition is $|\sigma_1| \leq 1$ and we also have to check the spurious root $|\sigma_2| \leq 1$. Probably the best way to proceed is to plot the σ roots in both the complex- σ and complex- λ planes as in Chapter 7 of the notes. From a matlab program we have

From the complex- λ plane figure one can pick off the stability bound as approximately $|\lambda h| < \frac{2}{3}$. Functional analysis confirms it.

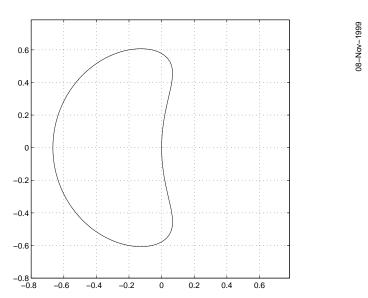


Figure 1: The complex- λ plane plot of $|\sigma|=1$

Midterm 1999 Question 3: Two Roots

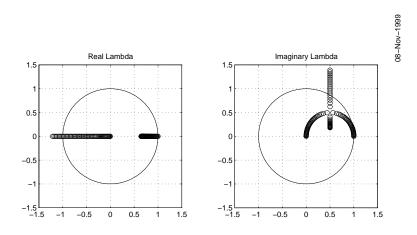


Figure 2: The complex- σ plane plot for Real- λ and Pure Imaginary- Λ